Solve the equation x^3-5x^2+7x-3=0

First start by considering the x0 coefficient which is -3. These include ±3 and ±1. Substituting x=1 into the polynomial produces an answer of 0 which shows that x=1 is a factor of the polynomial. Therefore x3-5x2+7x-3 = (x-1)(ax2+bx+c). As the x^3 coefficient =1, a must therefore also =1. -c =-3 as the x0 coefficient is 3, so c =3 and equation x coefficients gives 7=-b+c so b=-4. Factorising x2 -4x+3 gives (x-3)(x-1). The solutions of the equation are therefore x=1 and x=3.

AL
Answered by Annabelle L. Maths tutor

7755 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Change the subject of the formula F=(t^2+4b)/c to b.


Calculate the length of the hypotenuse of a right-angled triangle when the other two sides measure 6cm and 9cm.


Describe and explain three adaptations of succulent plants that allow them to live in hot and dry conditions.


Solve by factorisation: 2(x^2) - 5x - 12 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning