15 machines work at the same rate. Together, the 15 machines can complete an order in 8 hours. 3 of the machines break down after working for 6 hours. The other machines carry on working until the order is complete. In total, how many hours does EACH

The total number of 'machine hours' needed to complete an order is (15x8) = 120 hoursThe total number of hours worked by the broken machines = (6x3) = 18 hoursTherefore the total number of machine hours needed from the other 12 machines to complete the order = (120-18) = 102Per machine the total number of working hours therefore equals (102/12) = 8.5 hours

ER
Answered by Ethan R. Maths tutor

4956 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

f:x-->2x^2+1 and g:x--> 2x/(x-1) where x is not equal to 1. express the composite function gf as simply as possible


There are 420 balls in a ball pool. There is a combination of violet, blue, yellow and green balls. 2/7 are violet, 35% are blue and the ratio of yellow to green is 4:5. How many of each colour ball is there in the ball pool?


How do you solve the following simultaneous equations? 5x+6y=3 2x-3y=12


Express 50p as a fraction of £4 and give your answer in its simplest form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences