15 machines work at the same rate. Together, the 15 machines can complete an order in 8 hours. 3 of the machines break down after working for 6 hours. The other machines carry on working until the order is complete. In total, how many hours does EACH

The total number of 'machine hours' needed to complete an order is (15x8) = 120 hoursThe total number of hours worked by the broken machines = (6x3) = 18 hoursTherefore the total number of machine hours needed from the other 12 machines to complete the order = (120-18) = 102Per machine the total number of working hours therefore equals (102/12) = 8.5 hours

ER
Answered by Ethan R. Maths tutor

5704 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Differentiate y=3x^4 with respect to x


How do you solve simultaneous equations?


There are n sweets in a bag, 6 of which are red. The rest of the sweets are blue. Jen removes 1 sweet from the bag. Jen then takes another sweet from the bag. The probability that Hannah takes two red sweets is 1/3. Show that n²-n-90=0.


How do I solve simultaneous equations? eg 1) 4x = 16 - 2y and 2) 3x + y = 9


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning