Find the x value of the stationary points of the graph y = x^2e^x

The problem here can be solved quite easily by thinking about the graph. A stationary point occurs on a graph when it becomes 'flat'. You can think of this visually as the top of a hill or the bottom of a ditch. Mathematically, this happens when the first derivative (dy/dx) is equal to 0 since at this point, the graph has a gradient of 0 (i.e. y will not increase or decrease as x changes). Using the product rule, we can find out dy/dx = 2xe^x + x^2e^x. Since we know that the gradient is 0, we can say that dy/dx = 2xe^x + x^2e^x = 0. To simplify this problem, we can put the expression into brackets such as e^x(2x+x^2) = 0. Therefore, either e^x or x^2 + 2x must equal 0. since e^x can never equal zero, this means that x^2 + 2x must equal 0. x^2 + 2x = x(x+2) = 0. Therefore, x = 0 or x = -2. The respective y values can be calculated by plugging these x values into y = x^2e^x.

SM
Answered by Serkan M. Maths tutor

8227 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The function f(x) is defined by f(x) = 1 + 2 sin (3x), − π/ 6 ≤ x ≤ π/ 6 . You are given that this function has an inverse, f^ −1 (x). Find f^ −1 (x) and its domain


g(x) = e^(x-1) + x - 6 Show that the equation g(x) = 0 can be written as x = ln(6 - x) + 1, where x<6


Find the intersection coordinates of both axis with the function: f(x)=x^2-3x+4/3


Give the first and second derivative of the function f(x) = 5/x - 9x + 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences