Determine for what values of c, f(x)=4x^2-(2c+8)x+4 has no real roots.

For f(x) not to have any real roots, its discriminant, b2-4ac < 0. Plugging in the coefficients from f(x), this means (-(2c+8))2-4x4x4 < 0.This means (-(2c+8))2 < 4x4x4So 4c2+32c+64 < 64 by multiplying out the brackets.This means 4c2+32c < 0So c2+8c < 0, which factorised gives c(c+8) < 0As this has roots at c=-8 and c=0, by plotting a graph we can see that the range of values of -8<x<0.

AR
Answered by Alexander R. Maths tutor

1039 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Show that (𝑥 − 1) is a factor of 𝑓(𝑥)=2𝑥^3 + 𝑥^2 − 8𝑥+ 5. Hence fully factorise 𝑓(𝑥) fully.


Find ∫((x^2−2)(x^2+2)/x^2) dx, x≠0


y=x^3-3x^2+2x+5 a)Write down the coordinates of P the point where the curve crosses the x-axis. b)Determine the equation of the tangent to the curve at P. c)Find the coordinates of Q, the point where this tangent meets the curve again.


The line, L, makes an angle of 30 degrees with the positive direction of the x-axis. Find the equation of the line perpendicular to L, passing through (0,-4).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences