Determine for what values of c, f(x)=4x^2-(2c+8)x+4 has no real roots.

For f(x) not to have any real roots, its discriminant, b2-4ac < 0. Plugging in the coefficients from f(x), this means (-(2c+8))2-4x4x4 < 0.This means (-(2c+8))2 < 4x4x4So 4c2+32c+64 < 64 by multiplying out the brackets.This means 4c2+32c < 0So c2+8c < 0, which factorised gives c(c+8) < 0As this has roots at c=-8 and c=0, by plotting a graph we can see that the range of values of -8<x<0.

AR
Answered by Alexander R. Maths tutor

1075 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Evaluate log_6(12)+(1/3)log_6(27)


Find the gradient of the straight line with equation 4x+3y=12


Differentiate 5x^2 - 7x +9


Show that (𝑥 − 1) is a factor of 𝑓(𝑥)=2𝑥^3 + 𝑥^2 − 8𝑥+ 5. Hence fully factorise 𝑓(𝑥) fully.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences