Points P and Q are situated at coordinates (5,2) and (-7,8) respectively. Find a) The coordinates of the midpoint M of the line PQ [2 marks] b) The equation of the normal of the line PQ passing through the midpoint M [3 marks]

a) For finding the midpoint M, the point M must be equidistant from P and Q in both the x and y axes. Hence, we consider the x and y axis separately. The midpoint of the x coordinates is essentially a mean of their numerical values so the midpoint of the points in the x axis is (5+(-7))/2 and in the y axis (2+8)/2. When put in a calculator this finds that M has the coordinates (-1,5).b) To find the equation of a line requires the coordinates of a point on the line and the gradient of that line (in this case the normal). The gradient of a line has equation (y2-y1)/(x2-x1). Substituting those values into the equation where x1=5, y1=2, x2=-7 and y2=8, we get (8-2)/(-7-5)=6/(-12)=-0.5The gradient of the normal when multiplied to the gradient of the line is -1. Given that, we can obtain the gradient of the normal as (-1)/(-0.5) =2. This allows for the use of the equation of a straight line rule where:y-y1=m(x-x1)By substituting values in, we can obtain y-(-5)=2(x-(-1)), which simplifies to y=2x+7

JU
Answered by Justin U. Maths tutor

4254 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given the parametric equations x = t^2 and y = 2t -1 find dy/dx


Differentiate y = x^2 - 2x-3 + e^3x + 2ln(x)


A particle of mass 5kg is held at rests on a slope inclined at 30 degrees to the horizontal. The coefficient of friction for the slope is 0.7, determine whether the particle will move when released.


How can you integrate ln(x) with respect to x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning