Differentiate x^3⋅cos(5⋅x) with respect to x.

In order to solve this problem we will have to use the product rule as follows: d/dx[x^3⋅cos(5⋅x)]=[d/dx(x^3)]⋅cos(5x)+(x^3)⋅[d/dx[cos(5x)]]=(3⋅x^2)⋅cos(5⋅x)+(x^3)⋅−5⋅sin(5⋅x)=3⋅x^2⋅cos(5⋅x)−5⋅x^3⋅sin(5⋅x)

TL
Answered by Tianyu L. Maths tutor

5625 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = (( 4x + 1 )^3)sin(2x), find dy/dx.


∫ log(x) dx


A curve has equation (x+y)^2=x*y^2, find the gradient of the curve at a point where x=1


Why is it that sin^2(x) + cos^2(x) = 1?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences