Find the equation of the normal to the curve y=2x^3 at the point on the curve where x=2. Write in the form of ax+by=c.

For x = 2, y = 16. Calculate the gradient of the curve at y = 2, dy/dx = 6x^2, dy/dx = 24. This is also the gradient of the tangent to the curve at x = 2. It is a rule that the products of the gradients of two lines that are perpendicular to each other must equal -1 (m1m2 = -1). Using this, you can calculate the gradient of the normal to the curve, m2 = -1/24. You can now find the y intercept of the normal by substituting values into the equation y = mx + c. 16 = (-1/24)(2) + c, from rearranging c = 193/12. To get the final answer substitute values into the form ax + by = c which is rearranged from by = ax + c. y = (-1/24)x + 193/12, rearrange this to get (1/24)x + y + 193/12. To make this a lot nicer to read by having whole numbers and no fractions, multiply everything by 24 to get x + 24 y = 386, which is your final answer.

ML
Answered by Maddy L. Maths tutor

8205 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find, using calculus, the x coordinate of the turning point of the curve with equation y=e^3x cos 4


How do you simplify something of the form Acos(x) + Bsin(x) ?


find the integral of ((3x-2)/(6x^2-8x+3)) with respect to x between x=2 and x=1. (hint use substitution u=denominator)


Find the first four terms in the binomial expansion of (2 + x) ^5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences