How do we use the Chain-rule when differentiating?

The Chain-rule is used to differentiate a function of a function. Running through an example:Let's say want to differentiate the function y = (2x+1)^3. We can substitute a variable, w, in order to differentiate using the chain rule.Let (2x+1) = w . We now have y = (w)^3. If we differentiate this we get the function differentiated with respect to w.Hence, (dy/dw) = 3(w)^2. However we want to find (dy/dx). If we look carefully we can see that (dy/dx) = (dy/dw) * (dw/dx). This means that if we can find (dw/dx), we can multiply it by 3(w)^2 to find (dy/dx). We know that w = 2x+1. Differentiating this with respect to x we get (dw/dx) = 2. Now we have what we need to find (dy/dx).(dy/dx) = (dy/dw) * (dw/dx)(dy/dx) = [3(w)^2] * [2] (dy/dx) = 6(w)^2.Now all we need is to put it in terms of x. If we substitute w = 2x+1 into (dy/dx) we get:(dy/dx) = 6(2x+1)^2.This is our final answer. In general, we can find (dy/dx) using the chain rule by applying the fact that (dy/dx) = (dy/dw)(dw/dx).For functions of functions of functions we can use (dy/dx) = (dy/dw)(dw/du)*(du/dx) and so on for longer functions.

HR
Answered by Hira R. Maths tutor

3518 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the turning points of the curve y = 3x^4 - 8x^3 -3


Integrate 4x^3 + 6x^2 +4x + 3


Show that (sec(x))^2 /(sec(x)+1)(sec(x)-1) can be written as (cosec(x))^2.


4. The curve C has equation 4x^2 – y3 – 4xy + 2y = 0. P has coordinates (–2, 4) lies on C. (a) Find the exact value of d d y x at the point P. (6) The normal to C at P meets the y-axis at the point A. (b) Find the y coordinate of A


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences