Differentiate f(x) = 2xlnx.

Use the chain rule: f'(x) = v(du/dx) +u(dv/dx).

Let u = 2x, du/dx = 2, v = lnx, dv/dx = 1/x

Using this information: f'(x) = 2lnx + 2x/x

This simplifies to f'(x) = 2lnx +2.

TV
Answered by Tom V. Maths tutor

22091 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The gradient of the curve at A is equal to the gradient of the curve at B. Given that point A has x coordinate 3, find the x coordinate of point B.


Solve the following integral: ∫ arcsin(x)/sqrt(1-x^2) dx


Integrate y=x^2 between the limits x=3 and x=1


Differentiate y=x^3+ 7x-ln(2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning