Differentiate f(x) = 2xlnx.

Use the chain rule: f'(x) = v(du/dx) +u(dv/dx).

Let u = 2x, du/dx = 2, v = lnx, dv/dx = 1/x

Using this information: f'(x) = 2lnx + 2x/x

This simplifies to f'(x) = 2lnx +2.

TV
Answered by Tom V. Maths tutor

22069 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 6cos(2x) + sin(x) in terms of sin(x), hence solve the equation 6cos(2x) + sin(x) = 0 for 0<x<360


Find the coordinates of the centre of the circle with equation: x^2 + y^2 − 2*x + 14*y = 0


The straight line L1 passes through the points (–1, 3) and (11, 12). Find an equation for L1 in the form ax + by + c = 0, where a, b and c are integers


solve 4^xe^(7x+5) = 21


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning