Differentiate f(x) = 2xlnx.

Use the chain rule: f'(x) = v(du/dx) +u(dv/dx).

Let u = 2x, du/dx = 2, v = lnx, dv/dx = 1/x

Using this information: f'(x) = 2lnx + 2x/x

This simplifies to f'(x) = 2lnx +2.

TV
Answered by Tom V. Maths tutor

22101 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The volume of liquid in a container is given by v=(3h^2+4)^(3/2)-8, find dV/dh when h = 0.6


How to factorise any quadratic expression


Calculate the indefinite integral of ln(x)?


Differentiate sin(x^3) with respect to y


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning