A curve is defined with the following parameters; x = 3 - 4t , y = 1 + 2/t . Find dy/dx in terms of x and y.

Using the chain rule, we know that dy/dx = dy/dt . dt/dx Therefore we differentiate both equations with respect to t:dx/dt = -4dy/dt = -2/(t^2)therefore dy/dx = -1/4 . -2/(t^2)dy/dx = 1/(2t^2) ... (we know that t = (3-x)/4 )therefore dy/dx = 8/((3-x)^2)

BA
Answered by Brandon A. Maths tutor

3133 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A mass of 3kg rests on a rough plane inclined at 60 degrees to the horizontal. The coefficient of friction is 1/5. Find the force P acting parallel to the plane applied to the mass, in order to just prevent motion down the plane.


Solve the equation 7^(x+1) = 3^(x+2)


How do you differentiate this


Show that 2(1-cos(x)) = 3sin^2(x) can be written as 3cos^2(x)-2cos(x)-1=0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning