∫ log(x) dx

Using "Integration by parts" or "reverse chain rule" .
Recall formula for intergration by parts: "∫f'(x) g(x) dx = f(x)g(x) - ∫f(x)g'(x)dx"
Then set f'(x) = 1, g(x) = log(x). Can calculate f(x) = x, g'(x) = 1/x.
Then plug into the formula to get ∫log(x)dx = xlog(x) - ∫1 dx = xlog(x) - x +c

MT
Answered by Michael T. Maths tutor

48505 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Work out the equation of the normal to the curve y = x^3 + 2x^2 - 5 at the point where x = -2. [5 marks]


Integrate(1+x)/((1-x^2)(2x+1)) with respect to x.


Solve sec(x)^2-2*tan(x)=4 for 0<=x<=360


how can differentiate using the product and chain rule? e.g y=(4x+1)^3(sin2x), find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning