The function f (x) is defined by f (x) = (1-x)/(1+x), x not equal to -1. Show that f(f (x)) = x. Hence write down f ^-1 (x).

f(f (x) )= f( (1-x)/(1+x) ) = (1-(1-x)/(1+x))/(1+(1-x)/(1+x))where you replace x by (1-x)/(1+x). Multiply the top and bottom of the fraction by (1+x) to get ((1+x)-(1-x))/((1+x)+(1-x)) which simplifies to 2x/2 = x. Hence you have shown f(f (x)) = x. f^−1 (x) = f(x) = (1−x)/(1+x), this is because f^−1(f(x)) = f( f^−1(x))= x.

SP
Answered by Sarah P. Maths tutor

11164 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the vertex coordinates of parabola y = 2x^2 - 4x + 1


Solve for 0=<x<360 : 2((tanx)^2) + ((secx)^2) = 1


How do you find the integral of 'x sin(2x) dx'?


Find the equation of the tangent to the curve y=x^2+5x+2 at the point where x=5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning