f(x) = x^3 + 3x^2 + 5. Find (a) f ′′(x), (b) ∫f(x)dx.

(a) To find the second derivative of f(x) we must differentiate f twice.the first derivative of f is f'(x)= 3x^2 + 6xthe second derivative therefore is f''(x)= 6x +6
(b) The integral of f(x) with respect to x is ∫f(x) dx = ∫x^3 + 3x^2 + 5 dx = (x^4)/4 + (3x^3)/3 + 5x/1 + C = (x^4)/4 + x^3 + 5x + C where C is the constant of integration, C belongs to the set of real numbers.

SC
Answered by Samraj C. Maths tutor

7560 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate with respect to x: F(x)=(x^2+1)^2


Curve D has equation 3x^2+2xy-2y^2+4=0 Find the equation of the tangent at point (2,4) and give your answer in the form ax+by+c=0, were a,b and c are integers.


A trolley of negilible mass on horizontal tracks is at rest. A person of mass 50kg is standing on the trolley with a bag of mass 10kg. The person throws the bag off the trolley horizontally with a velocity of 3m/s. Calculate the velocity of the man.


find the value of dy/dx at the point (1,1) of the equation e^(2x)ln(y)=x+y-2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences