Explain the sliding filament model of skeletal muscle contraction

An action potential on a motor axon reaches the axon terminal, causing acetylcholine to be released. It diffuses across the neuromuscular cleft in synaptic vesicles and binds with acetylcholine receptors on the motor end plate (acetylcholine is later broken down by acetylcholinesterase). This causes an end plate potential, which depolarises the sarcolemma (the membrane around the muscle). This then depolarises the T tubules, which are in direct contact with the sarcoplasmic reticulum (the membrane which surrounds each muscle fibre). This results in the Calcium channels in the sarcoplasmic reticulum (called ryanodine receptors) to open, releasing calcium ions. These calcium ions bind to troponin, which pulls the tropomyosin away from the myosin-binding site (as it was blocking it). This allows the myosin heads to bind to the actin filament with the help of ATP hydrolysis, and the heads slide along the actin filament binding to different binding-sites, shortening the muscle fibre each time. This is skeletal muscle contraction.

MP
Answered by Maddie P. Biology tutor

1735 Views

See similar Biology IB tutors

Related Biology IB answers

All answers ▸

Explain the role of enzymes in the process of DNA replication in prokaryotes


Outline the control of the heartbeat in terms of myogenic muscle contraction, the role of the pacemaker, nerves, the medulla of the brain and epinephrine (adrenaline).


What is the role of the vacuole in the plant cell?


Explain the process of DNA replication, including the names of vital enzymes


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences