Solve the differential equation dx/dt = -2(x-6)^(1/2) for t in terms of x given that x = 70 when t = 0.

First, manoeuvre variables so that we can integrate the equation.
1/(x-6)^(1/2) dx = -2 dt
Integrate the equation and add the constant.
2(x-6)^(1/2) = -2t +c
Solve for t.
t = -(x-6)^(1/2) - c
Substitute x = 70 when t = 0 to find the constant.
0 = -(70-6)^(1/2) - c
c = -8
Substitute c into our equation for t in terms of x.
t = 8 - (x-6)^(1/2)

LP
Answered by Louis P. Maths tutor

5271 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the gradient of this curve y=5x^3+6x^2+7x+8 at point x=3?


If (x+1) is a factor of 2x^3+21x^2+54x+35, fully factorise 2x^3+21x^2+54x+35


What is a Tree Diagram?


What are the stationary points of the curve (1/3)x^3 - 2x^2 + 3x + 2 and what is the nature of each stationary point.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning