Solve the differential equation dx/dt = -2(x-6)^(1/2) for t in terms of x given that x = 70 when t = 0.

First, manoeuvre variables so that we can integrate the equation.
1/(x-6)^(1/2) dx = -2 dt
Integrate the equation and add the constant.
2(x-6)^(1/2) = -2t +c
Solve for t.
t = -(x-6)^(1/2) - c
Substitute x = 70 when t = 0 to find the constant.
0 = -(70-6)^(1/2) - c
c = -8
Substitute c into our equation for t in terms of x.
t = 8 - (x-6)^(1/2)

LP
Answered by Louis P. Maths tutor

5313 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

For a curve of equation 2ye^-3x -x = 4, find dy/dx


Use implicit differentiation to find dy/dx of the equation 3y^2 + 2^x + 9xy = sin(y).


Find d^2y/dx^2 for y=4x^4−3x^3−6x^2+x


If 1/(x(a-x)) is equivalent to B(1/x + 1/(a-x)), Express 'B' in terms of 'a'


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning