Solve the differential equation dx/dt = -2(x-6)^(1/2) for t in terms of x given that x = 70 when t = 0.

First, manoeuvre variables so that we can integrate the equation.
1/(x-6)^(1/2) dx = -2 dt
Integrate the equation and add the constant.
2(x-6)^(1/2) = -2t +c
Solve for t.
t = -(x-6)^(1/2) - c
Substitute x = 70 when t = 0 to find the constant.
0 = -(70-6)^(1/2) - c
c = -8
Substitute c into our equation for t in terms of x.
t = 8 - (x-6)^(1/2)

LP
Answered by Louis P. Maths tutor

5543 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = 2x^3 + 15x^2 + 24x + 10 Find the stationary points on this curve and determine their nature


You are given the function f(x)=x^3-x^2-7x+3, and that x=3 is a root of f(x)=0. Find the exact values of the other 2 roots. (6 marks)


When is an arrangement a combination, and when a permutation?


x^3 + 3x^2 + 2x + 12


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning