Express cos2x in the form a*cos^2(x) + b and hence show that the integral of cos^2(x) between 0 and pi/2 is equal to pi/a.

Apply the double angle formula to cos2x to yield the requested result.
cos2x = 2cos^2(x) - 1
Spot that the question asks us to prove the value of cos^2(x) when integrated, and that we can move the variables in the above equation to have cos^2(x) on its own.
cos^2(x) = (1/2)*(cos2x +1)
Now we can integrate the the equation between 0 and pi, and we should get the right hand side equal to pi/4.
[ (1/4)*sin2x + x/2 ] from 0 to pi/2
substituting pi/2 into the above equation gives pi/4. Substituting 0 into the above equation gives 0.
So we get pi/4 - 0 = pi/4

LP
Answered by Louis P. Maths tutor

5062 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

x = 1 is a solution for the curve y = x^3-6x^2+11x-6, find the other solutions and sketch the curve, showing the location of any stationary points.


Given that x=ln(t) and y=4t^3,a) find an expression for dy/dx, b)and the value of t when d2y/dx2 =0.48. Give your answer to 2 decimal place.


Show that cosec(2x) + cot(2x) = cot(x)


Find the turning points and their nature of the graph y = x^3/3 - 7x^2/2 + 12x + 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning