Express cos2x in the form a*cos^2(x) + b and hence show that the integral of cos^2(x) between 0 and pi/2 is equal to pi/a.

Apply the double angle formula to cos2x to yield the requested result.
cos2x = 2cos^2(x) - 1
Spot that the question asks us to prove the value of cos^2(x) when integrated, and that we can move the variables in the above equation to have cos^2(x) on its own.
cos^2(x) = (1/2)*(cos2x +1)
Now we can integrate the the equation between 0 and pi, and we should get the right hand side equal to pi/4.
[ (1/4)*sin2x + x/2 ] from 0 to pi/2
substituting pi/2 into the above equation gives pi/4. Substituting 0 into the above equation gives 0.
So we get pi/4 - 0 = pi/4

LP
Answered by Louis P. Maths tutor

4780 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y= exp(cos^2(x)+sin^2(x)) by using the chain rule.


The element of a cone has length L. For what height H (with respect to L) will the volume of the cone be the largest?


How do you do algebraic long division?


Using integration by parts, and given f(x) = 3xcos(x), find integrate(f(x) dx) between (pi/2) and 0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning