Express cos2x in the form a*cos^2(x) + b and hence show that the integral of cos^2(x) between 0 and pi/2 is equal to pi/a.

Apply the double angle formula to cos2x to yield the requested result.
cos2x = 2cos^2(x) - 1
Spot that the question asks us to prove the value of cos^2(x) when integrated, and that we can move the variables in the above equation to have cos^2(x) on its own.
cos^2(x) = (1/2)*(cos2x +1)
Now we can integrate the the equation between 0 and pi, and we should get the right hand side equal to pi/4.
[ (1/4)*sin2x + x/2 ] from 0 to pi/2
substituting pi/2 into the above equation gives pi/4. Substituting 0 into the above equation gives 0.
So we get pi/4 - 0 = pi/4

LP
Answered by Louis P. Maths tutor

5228 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the result: ∫(2xsin(x)cos(x))dx = -1⁄2[xcos(2x)-1⁄2sin(2x)] calculate ∫sin²(x) dx using integration by parts


A curve has parametric equations x=2t, y=t^2. Find the Cartesian equation of the curve.


What is the chain rule and how does it work?


if f(x) = 7x-1 and g(x) = 4/(x-2), solve fg(x) = x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning