Express cos2x in the form a*cos^2(x) + b and hence show that the integral of cos^2(x) between 0 and pi/2 is equal to pi/a.

Apply the double angle formula to cos2x to yield the requested result.
cos2x = 2cos^2(x) - 1
Spot that the question asks us to prove the value of cos^2(x) when integrated, and that we can move the variables in the above equation to have cos^2(x) on its own.
cos^2(x) = (1/2)*(cos2x +1)
Now we can integrate the the equation between 0 and pi, and we should get the right hand side equal to pi/4.
[ (1/4)*sin2x + x/2 ] from 0 to pi/2
substituting pi/2 into the above equation gives pi/4. Substituting 0 into the above equation gives 0.
So we get pi/4 - 0 = pi/4

LP
Answered by Louis P. Maths tutor

5278 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation of a curve is x(y^2)=x^2 +1 . Using the differential, find the coordinates of the stationary point of the curve.


Differentiate the following... f(x)= 5x^4 +16x^2+ 4x + 5


A stone was thrown with velocity 20m/s at an angle of 30 degrees from a height h. The stone moves under gravity freely and reaches the floor 5s after thrown. a) Find H, b)the horizontal distance covered


Express 3cos(x)+4sin(x) in the form Rsin(x+y) where you should explicitly determine R and y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning