A particle P of mass 0.4 kg is moving under the action of a constant force F newtons. Initially the velocity of P is (6i – 27j) m s−1 and 4 s later the velocity of P is (−14i + 21j) m s−1 . Find, in terms of i and j, the acceleration of P.

On the whiteboard I would provide a brief drawing of the particle, and of all the information provided (force applied to P and its before and after velocity) as a visual aid for the student. I would ask/remind the student of the equation for acceleration (= (final velocity - initial velocity)/time), and then prompt them to use the information provided in the question to find values to substitute into the equation. From this we would get acceleration = ((-14i + 21j) - (6i - 27j))/4Step by step I would encourage the student to simplify the equation to make it more manageable i.e. (-14i + 21j - 6i + 27j)/4Then (-20i + 48j)/4From this we can finally reach the answer - 5i + 12j

FW
Answered by Finn W. Maths tutor

7196 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Consider an isosceles triangle ABC, where AB=AC=1, M is the midpoint of BC, and <BAM=<CAM=x. Use trigonometry to find an expression for BM and by finding BC^2, show that cos2x = 1 - 2(sinx)^2.


Find all solutions of x^2-x-6 using the quadratic formula


Find the equation of the line passing through the point ( 2, −3) which is parallel to the line with equation y + 4x = 7


equation(1) h = 3t^2 a) find h when t=5 b)find t when h=108


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning