Given that y = (sin(6x))(sec(2x) ), find dy/dx

We can find dy/dx by using the product rule: If y=uv then dy/dx = u (dv/dx)+ v (du/dx). In this question u= sin(6x) and v= sec(2x).So du/dx= 6cos(6x) and dv/dx=2sec(2x)tan(2x), using our rules for differentiating trig functions.Subbing this into our product rule formula gives us: dy/dx= sin(6x)(2sec(2x)tan(2x)) + sec(2x)(6cos(6x)).So dy/dx = 2sin(6x)sec(2x)tan(2x) + 6cos(6x)sec(2x), and this is our final answer as it cannot be simplified any more.

EH
Answered by Eli H. Maths tutor

3903 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

dx/dt=-5x/2 t>=0 when x=60 t=0


What is the centre and radius of the circle with the equation x(x-2)+y(y+6)+4=0 ?


How do you conduct a two tailed binomial hypothesis test


The line AB has equation 5x + 3y + 3 = 0 and it intersects the line with equation 3x - 2y + 17 = 0 at the point B. Find the coordinates of B.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning