Given that y = (sin(6x))(sec(2x) ), find dy/dx

We can find dy/dx by using the product rule: If y=uv then dy/dx = u (dv/dx)+ v (du/dx). In this question u= sin(6x) and v= sec(2x).So du/dx= 6cos(6x) and dv/dx=2sec(2x)tan(2x), using our rules for differentiating trig functions.Subbing this into our product rule formula gives us: dy/dx= sin(6x)(2sec(2x)tan(2x)) + sec(2x)(6cos(6x)).So dy/dx = 2sin(6x)sec(2x)tan(2x) + 6cos(6x)sec(2x), and this is our final answer as it cannot be simplified any more.

EH
Answered by Eli H. Maths tutor

3314 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 1/x


Find the x and y coordinates of the turning points of the curve 'y = x^3 - 3x^2 +4'. Identify each turning point as either a maximum or a minimum.


Solve the equation " 2sec^2(x) = 5tanx " for 0 < x < π


Find the tangent and normal to the curve y=(4-x)(x+2) at the point (2, 8)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences