Given that y = (sin(6x))(sec(2x) ), find dy/dx

We can find dy/dx by using the product rule: If y=uv then dy/dx = u (dv/dx)+ v (du/dx). In this question u= sin(6x) and v= sec(2x).So du/dx= 6cos(6x) and dv/dx=2sec(2x)tan(2x), using our rules for differentiating trig functions.Subbing this into our product rule formula gives us: dy/dx= sin(6x)(2sec(2x)tan(2x)) + sec(2x)(6cos(6x)).So dy/dx = 2sin(6x)sec(2x)tan(2x) + 6cos(6x)sec(2x), and this is our final answer as it cannot be simplified any more.

EH
Answered by Eli H. Maths tutor

3199 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do i use the chain rule twice when differentiating?


solve 3 cos (2y )- 5 cos( y)+ 2 =0 where 0<y<360 degrees


Differentiate ((x^2)+1)^2


Find the area enclosed by the curve y = 3x - x^2 and the x-axis


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences