Solve the differential equation : dy/dx - x^3 -5x = 0

First rearrange the equation dy/dx = x3 + 5x Then move the dx to the RHS of the equation dy = ( x3+ 5x)dxThen integrate both sides, with respect to y on the LHS and with respect to x on the RHS (don't forget the constant of integration!)y = x4/4 + 5x2/2 + CReminder: even though we integrate twice, we only need one constant in our solution, as a constant plus another constant is also a constant.

OM
Answered by Olivia M. Maths tutor

4451 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

a) Find the indefinite integral of sec^2(3x) with respect to x. b) Using integration by parts, or otherwise, find the indefinite integral of x*sec^2(3x) with respect to x.


differentiate with respect to x: (x^3)(e^x)


How do you differentiate parametric equations?


Find the equation of the tangent to the curve y = (5x+4)/(3x-8) at the point (2, -7).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning