Solve the differential equation : dy/dx - x^3 -5x = 0

First rearrange the equation dy/dx = x3 + 5x Then move the dx to the RHS of the equation dy = ( x3+ 5x)dxThen integrate both sides, with respect to y on the LHS and with respect to x on the RHS (don't forget the constant of integration!)y = x4/4 + 5x2/2 + CReminder: even though we integrate twice, we only need one constant in our solution, as a constant plus another constant is also a constant.

OM
Answered by Olivia M. Maths tutor

3935 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C is defined by the equation sin3y + 3y*e^(-2x) + 2x^2 = 5, find dy/dx


Using Trigonometric Identities prove that [(tan^2x)(cosecx)]/sinx=sec^2x


Find dy/dx when y = x(4x + 1)^1/2


How would I integrate the indefinite integral x^2 dx?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences