Integrate Sin(x)Cos(x)dx.

Integral(Sin[x]Cos[x]dx) can be calculated. The method is to recognise that the trigonometric identity of 2Sin[x]Cos[x]=Sin[2x] can be applied. This would transform the integral into Integral(0.5Sin[2x]) which can of course be resolved to Cos[2x] + C.

DD
Answered by Daniel D. Maths tutor

4603 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A cuboid has a rectangular cross section where the length of the rectangle is equal to twice its width x cm. THe volume is 81 cm^3. a) show that the total length L cm of the cuboid is given by L=12x+162/x^2


How do you find the inverse of a function?


What is the derivative?


Integrate x^2e^x with respect to x between the limits of x=5 and x=0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning