Find the stationary points on y = x^3 + 3x^2 + 4 and identify whether these are maximum or minimum points.

Differentiate wrt x. This leaves dy/dx = 3x^2 + 6x and equate this to 0 as we are looking for stationary points.So, 3x^2 + 6x = 0. Factorise to get x(3x +6) = 0. So x = 0 and x = -2 are the two solutions.Now differentiate wrt x once again, to give d^2y/dx^2 = 6x + 6. Now substitute in the values of x we have: For x = 0, d^2y/dx^2 = 6(0) + 6 = 6. Since 6 > 0, this can be identified as a minimum point.For x = -2, d^2y/dx^2 = 6(-2) + 6 = -6. Since -6 < 0, this can be identified as a maximum point.Now to complete the question, substitute our values of x for the stationary points into the original equation to find the y coordinates.So for x = 0, y = (0)^3 + 3(0)^2 + 4 = 4. This tells us that the minimum point is (0,4)And for x = -2, y = (-2)^3 + 3(-2)^2 + 4 = 8. This tells us that the maximum point is (-2,8)

TD
Answered by Tutor169411 D. Maths tutor

2857 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A block of mass M lies stationary on a rough plane inclined at an angle x to the horizontal. Find a general expression relating the coeffecient of friction between the block and the plane and the angle x. At what angle does the box begin to slide?


What is the exact answer to (1^3 + 2^3 + 3^3)^(0.5) ?


Integrate ∫sin²xcosxdx


How do you solve the equation e^2x - 2e^x - 3 = 0 ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences