The equation f(x) =x^3 + 3x is drawn on a graph between x = 0 and x = 2. The graph is then rotated around the x axis by 2π to form a solid. What is the volume of this solid?

f(x) = x3 + 3x V = π ∫ (f(x)2) dx V = π ∫02 (x3 + 3x)(x3 + 3x) dx V = π ∫02 (x6 + 6x4 +9x2) dx V = π[x7/7 + 6x5/5 + 3x3] V = 2824/35

ZC
Answered by Zac C. Maths tutor

3518 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle C has centre (-5, 12) and passes through the point (0,0) Find the second point where the line y=x intersects the circle.


Differentiate 5x^2 + 11x + 5 with respect to x


Solve algebraically: 2x - 5y = 11, 3x + 2y = 7


What is the equation of the tangent to the curve y=x^3+3x^2+2 when x=2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning