Find the gradient of the tangent to the curve y=4x^2 - 7x at x = 2

First, we differentiate our equation using the power rule:dy/dx = 8x - 7This is the gradient of our tangent, to the original equation, at any point x. So, to calculate the gradient at x = 2, we substitute this value into dy/dx.So, we have: gradient = 8(2) - 7 = 9 as required.

LA
Answered by Luke A. Maths tutor

5042 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the nature of the turning points of the graph given by the equation x^4 +(8/3)*x^3 -2x^2 -8x +177 (6 marks)


How do I find and determine the nature of stationary points of a function?


Do the circles with equations x^2 -2x + y^2 - 2y=7 and x^2 -10x + y^2 -8y=-37 touch and if so, in what way (tangent to each other? two point of intersection?)


What is Bayes' rule and why is it useful?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning