Integrate sec^2(x)tan(X)dx

This can be done with integration by substitution. If we let u=tanx then du/dx=sec^2(X). If we substitute U into the integrand we get it being u(sec^2(X))dx. rearranging the du/dx equation to make dx the subject and we get dx=1/(sec^2(x)) du and so subbing this into the equation we see the sec^2(x) cancel. This leaves the integral of udu, which gives 1/2(u^2) + c, which is (1/2)tan^2(x) + c when subbing u=tan(x) back in.

AZ
Answered by Amin Z. Maths tutor

23303 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate with respect to x: F(x)=(x^2+1)^2


Using the product rule, differentiate y=(2x)(e^3x)


f(x) = x^3 + 3x^2 + 5. Find (a) f ′′(x), (b) ∫f(x)dx.


Circle C has equation x^2 + y^2 - 6x + 4y = 12, what is the radius and centre of the circle


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning