Integrate sec^2(x)tan(X)dx

This can be done with integration by substitution. If we let u=tanx then du/dx=sec^2(X). If we substitute U into the integrand we get it being u(sec^2(X))dx. rearranging the du/dx equation to make dx the subject and we get dx=1/(sec^2(x)) du and so subbing this into the equation we see the sec^2(x) cancel. This leaves the integral of udu, which gives 1/2(u^2) + c, which is (1/2)tan^2(x) + c when subbing u=tan(x) back in.

AZ
Answered by Amin Z. Maths tutor

20660 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find a local minimum of the function f(x) = x^3 - 2x.


A particle of mass 0.5 kg is moving down a rough slope (with coefficient of friction = 0.2) inclined at 30 degrees to the horizontal. Find the acceleration of the particle. Use g = 9.8 ms^-2.


What is a stationary point and how do I find where they occur and distinguish between them?


A function is defined by f(x)= e^(x^2+4), all real x. Find inverse of f(x) and its domain.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences