Differentiante y = arctan(c)

y = arctan(x)tan(y) = xsec2(y) = dx/dyfrom cos2A + sin2A = 1, we know that 1 + tan2A = sec2A (divide by cos2A), so we substitute in1 + tan2(y) = dx/dyfrom the initial relationship,1 + x2 = dx/dyfinally reciprocate the expression to get1/(1+x2) = dy/dx (Solved)

SS
Answered by Savvas S. Maths tutor

2689 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Compare the following logarithms in base 1/2 without a calculator: log(8) and log(512)


How do you find the integral of (2+5x)e^3x ?


Does the equation x^2 + 2x + 5 = 0 have any real roots?


Differentiate: y=12x(2x+1)+1/x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences