Differentiante y = arctan(c)

y = arctan(x)tan(y) = xsec2(y) = dx/dyfrom cos2A + sin2A = 1, we know that 1 + tan2A = sec2A (divide by cos2A), so we substitute in1 + tan2(y) = dx/dyfrom the initial relationship,1 + x2 = dx/dyfinally reciprocate the expression to get1/(1+x2) = dy/dx (Solved)

SS
Answered by Savvas S. Maths tutor

3122 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the line with equation 2x + 5y = 7


A curve has the equation (x+y)^2 = xy^2. Find the gradient of the curve at the point where x=1


When do you use integration by parts?


Find two values of k, such that the line y = kx + 2 is tangent to the curve y = x^2 + 4x + 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning