Use implicit differentiation to find dy/dx of the equation 3y^2 + 2^x + 9xy = sin(y).

Differentiating each term separately, and using implicit differentiation to differentiate the functions of y by differentiating with respect to y and multiplying by dy/dx, we can obtain 6ydy/dx + ln22^x + 9y + 9xdy/dx = cos(y)dy/dx. This involves using the product rule, and the rule that the derivative of a^x is lnaa^x. Once we have obtained this we need to move all the terms that are multiplied by dy/dx onto the same side so we can factor it out, i.e dy/dx(6y + 9x - cos(y)) = -9y - ln22^x. Finally by division, we obtain dy/dx = (-9y - ln2*2^x)/(6y + 9x -cos(y)).

LS
Answered by Luke S. Maths tutor

6430 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given the function f(x)=ax^2+bx+c, we are given that it has x-intercepts at (0,0) and (8,0) and a tangent with slope=16 at the point x=2. Find the value of a,b, and c.


Find the set of values of k for which x^2 + 2x+11 = k(2x-1)


Integrate ((5x^3) + ((2x)^-1) + (e^2x))dx.


What is differentiation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences