Use implicit differentiation to find dy/dx of the equation 3y^2 + 2^x + 9xy = sin(y).

Differentiating each term separately, and using implicit differentiation to differentiate the functions of y by differentiating with respect to y and multiplying by dy/dx, we can obtain 6ydy/dx + ln22^x + 9y + 9xdy/dx = cos(y)dy/dx. This involves using the product rule, and the rule that the derivative of a^x is lnaa^x. Once we have obtained this we need to move all the terms that are multiplied by dy/dx onto the same side so we can factor it out, i.e dy/dx(6y + 9x - cos(y)) = -9y - ln22^x. Finally by division, we obtain dy/dx = (-9y - ln2*2^x)/(6y + 9x -cos(y)).

LS
Answered by Luke S. Maths tutor

6011 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx in terms of t for the curve given by the parametric equations x = tan(t) , y = sec(t) for -pi/2<t<pi/2.


Solve the equation 3^(5x-2)=4^(6-x), and show that the solution can be written in the form log10(a)/log10(b).


Differentiate x^2 from first principles


What is the tangent line to the curve y = x^3+4x+5 at the point where x = 2?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences