A bag contains only apple and oranges. The probability an apple is picked randomly is 1 in 5. The apple is returned, and five more apples are added to the bag. The probability of an apple being picked is now 1in 3. How many apples were there originally?

2 simultaneous unknown equations. Let x be the number of apples originally, and n the number of fruits in the bag in total originally. i) first scenario, where probability is 1/5, x/n = 1/5    5x= n  ii) second scenario, where 5 apples where added. (x+5)/(n+5)=1/3 3x+15= n+5present them as one equation: i) +5 on the n side---> 5x+5=n+5. Now can it can be presented as: 5x+5= 3x+15. solve the equation:5x-3x=15-5; 2x=10x=5. Therefore, there were 5 apple originally in the bag.

CL
Answered by Chloe L. Maths tutor

3497 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Work out ∛16 as a power of two. (AQA GCSE Higher paper 2017, Q24b)


Solve the quadratic: 3x^2+4x = 20 to find x.


The perimeter of a right-angled triangle is 72 cm. The lengths of its sides are in the ratio 3 : 4 : 5 Work out the area of the triangle.


Express 12.5% as a fraction.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences