Find the general solution of the equation tan(2x + pi/2) = SQRT(3), giving your answer for x in terms of π in a simplified form.

Assume y = 2x + pi/2,
Since the period of 'tangent' is pi, the general solution of 'y' to valid the equation of tan(y) = SQRT(3) is the form of y = npi+pi/3 where 'n' is any positive or negative integer and zero.
Substitute y back to the equation, it becomes 2x + pi/2 = n
pi+pi/3.
Simplify this equation in the form of 'x', it becomes: x = 1/2(n*pi - pi/6) where 'n' is any positive or negative integer and zero.

CH
Answered by Chunlong H. Maths tutor

4193 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find values of x in the interval 0<x<360 degrees. For which 5sin^2(x) + 5 sin(x) +4 cos^2(x)=0


Differentiate x^x


How do you show some quadratic polynomials are always greater than 0?


Whats the Product rule for differentiation and how does it work?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning