Find the general solution of the equation tan(2x + pi/2) = SQRT(3), giving your answer for x in terms of π in a simplified form.

Assume y = 2x + pi/2,
Since the period of 'tangent' is pi, the general solution of 'y' to valid the equation of tan(y) = SQRT(3) is the form of y = npi+pi/3 where 'n' is any positive or negative integer and zero.
Substitute y back to the equation, it becomes 2x + pi/2 = n
pi+pi/3.
Simplify this equation in the form of 'x', it becomes: x = 1/2(n*pi - pi/6) where 'n' is any positive or negative integer and zero.

CH
Answered by Chunlong H. Maths tutor

4044 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to factorise any quadratic expression


How would I go about drawing the graph of f(x) = sin(x)/(e^x) for -π≤x≤2π?


Show that the line y = x - 7 does not meet the circle (x + 2)^2 + y^2 = 33.


Find the location of the turning point of the following curve, y = x^2 + 6x - 7


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences