(Follow on from previous question) A curve has equation y= x^2+3x+2. Use your previous results to i) find the vertex of the curve ii) find the equation of the line of symmetry of the curve

i) y = x2+3x+2 = (x+3/2)2-1/4Solution for (x+3/2) = 0 is x coordinate, which is x = -3/2Solution for y value is the additional constant, which is y = -1/4Therefore the vertex (minimum point) is (-3/2,-1/4)
ii) The line of symmetry is x = -3/2 (a vertical line that runs through the vertex of the curve)

RI
Answered by Ross I. Maths tutor

3350 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I identify that the coordinate (2,3) is the maximum point of the curve f(x)?


How can I calculate the maximum value of the compound angle formulae Rsin(x+a) and Rcos(x+a)?


Find the first derivative of r=sin(theta+sqrt[theta+1]) with respect to theta.


Given that y=ln([2x-1/2x=1]^1/2) , show that dy/dx= (1/2x-1)-(1/2x+1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning