A) Differentiate ln(x) b) integrate ln(x)

A) y=ln(x) Ey = x Ey(dy/dx ) = 1 Eln(x)(dy/dx) = 1 X(dy/dx) = 1 Dy/dx = 1/xb) y = 1 * ln(x) V = ln(x) U= x dv/dx =1/x Du/dx = 1xln(x) - (integral) x * (1/x)xln(x) - (integral) 1= xln(x) -x + C

SR
Answered by Stanley R. Maths tutor

3353 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation of a curve C is (x+3)(y-4)=x^2+y^2. Find dy/dx in terms of x and y


find the gradient of y=x3 X0=5


Simplify √32+√18 to a*√2 where a is an integer


Find the coordinate of the stationary point on the curve y = 2x^2 + 4x - 5.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning