A) Differentiate ln(x) b) integrate ln(x)

A) y=ln(x) Ey = x Ey(dy/dx ) = 1 Eln(x)(dy/dx) = 1 X(dy/dx) = 1 Dy/dx = 1/xb) y = 1 * ln(x) V = ln(x) U= x dv/dx =1/x Du/dx = 1xln(x) - (integral) x * (1/x)xln(x) - (integral) 1= xln(x) -x + C

SR
Answered by Stanley R. Maths tutor

3066 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Derive Law of Cosines using Pythagorean Theorem


Using Discriminants to Find the Number of Roots of a Quadratic Curve


F ind all values of x in the range 0° <= x <= 180° satisfying tan(x+45°)= 8tan(x)


Using the trigonometric identity (sinx)^2 + (cosx)^2 = 1, show that (secx)^2 = (tanx)^2 + 1 is also a trigonometric identity.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences