Find all values of x in the interval 0 ≤ x ≤ 2pi for 2sin(x)tan(x)=3

This questions involves the use of trigonometric identities, specifically [1] tan(x) = sin(x)/cos(x) and [2] sin2(x) + cos2(x) = 1.
Start by rearranging the given equations to tan(x) = 3/2sin(x) by diving through by 2sin(x). Next rewrite tan(x) using identity [1] above to give sin(x)/cos(x) = 3/2sin(x).Now cross multiply to give 2sin2(x)=3cos(x), this equation needs to all be in terms of cos(x) before it can be solved so identity [2] is needed to do this. Substitute sin2(x) for 1 - cos2(x) which gives 2(1 - cos2(x)) = 3cos(x). Multiply this out and rearrange to give an equation of a quadratic form; 2cos2(x) + 3cos(x) - 2 = 0. Factorise this quadratic to give (2cos(x) - 1)(cos(x) + 2) = 0, to solve this rearrange each bracket to give cos(x) = 1/2 and cos(x) = 2.
To make sure every solution to the equation is found, drawing a rough cos graph can be very helpful, through this you can see that cos(x) cannot equal 2 and therefore rules out this answer. You can also see that cos(x) = 1/2 has two solutions; where x = pi/3 and x = 5pi/3

JC
Answered by Jasmin C. Maths tutor

6960 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The probability distribution of the random variable X is given by the formula P(X = x) = 0.09+0.01x^2 for x= 1,2,3,4,5 ). Find E(X).


Find, w.r.t to x, both the derivative and integral of y=6*sqrt(x)


How do you sketch the curve y=(x^2 - 4)(x+3), marking on turning points and values at which it crosses the x axis


Two masses A and B, 2kg and 4kg respectively, are connected by a light inextensible string and passed over a smooth pulley. The system is held at rest, then released. Find the acceleration of the system and hence, find the tension in the string.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning