Solve the following simultaneous equations: x^2 + 2y = 9, and y = x + 3.

Label the two equations as the following: x2 + 2y = 9 y = x + 3 Equation 2 can be substituted into equation 1, giving: x2 + 2( x + 3 ) = 9Expanding the brackets and subtracting 9 from both sides means equation 1 becomes x2 + 2x - 3 = 0Then we can factorise this to create (x + 3)(x - 1) = 0Which means x = -3, and x = 1.
Substituting these values into equation 2 gives usy = 0 and y = 4, respectively.So the solutions are (-3, 0) and (1, 4).

XB
Answered by Ximena B. Maths tutor

4336 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

divide 352 into a ratio of 5:11


A game consists of 5 cups turned upside down, under one of the cups is a prize. 5 friend's pick a cup in turn and lifts it up, if they get the prize, they win , but if not, the cup is removed and the next friend picks. What position is it best to pick?


How do I solve simultaneous equations?


Simplify the algebraic expression: (3x^2-7x-6)/(x^2-6x+9)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning