Solve the following simultaneous equations: x^2 + 2y = 9, and y = x + 3.

Label the two equations as the following: x2 + 2y = 9 y = x + 3 Equation 2 can be substituted into equation 1, giving: x2 + 2( x + 3 ) = 9Expanding the brackets and subtracting 9 from both sides means equation 1 becomes x2 + 2x - 3 = 0Then we can factorise this to create (x + 3)(x - 1) = 0Which means x = -3, and x = 1.
Substituting these values into equation 2 gives usy = 0 and y = 4, respectively.So the solutions are (-3, 0) and (1, 4).

XB
Answered by Ximena B. Maths tutor

3892 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I solve a simple simultaneous equation?


Solve the equation: x^2+x-12=0


There are three boxes and one has a prize inside. You are told to choose a box. One of the other boxes is then opened, showing that it is empty. You are given the option to switch your choice to the other remaining box. Should you switch? Why?


Plot the graph, y=2x^2 -7x +4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences