show y=3x-5 is tangent to x^2 + y^2 +2x -4y - 5 = 0 and the point where they touch

y=3x-5x^2 + (3x-5)^2 + 2x - 4(3x-5) - 5 = 0x^2 + 9x^2 -30x +25 + 2x -12x + 20 - 5 = 010x^2 -40x + 40 = 010 (x^2 - 4x +4) = 010(x - 2)^2 = 0x=2implies one point of contact, therefore tangenty = 3x - 5y = 6 -5 = 1

RM
Answered by Robert M. Maths tutor

2403 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Evaluate log_6(12)+(1/3)log_6(27)


y=x^3-3x^2+2x+5 a)Write down the coordinates of P the point where the curve crosses the x-axis. b)Determine the equation of the tangent to the curve at P. c)Find the coordinates of Q, the point where this tangent meets the curve again.


Point K(8,-5) lies on the circle x^2 +y^2 - 12x - 6y - 23. find the equation of the tangent at K.


Solve algebraically the system of equations: 4x+5y=-3 and 6x-2y=5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning