show y=3x-5 is tangent to x^2 + y^2 +2x -4y - 5 = 0 and the point where they touch

y=3x-5x^2 + (3x-5)^2 + 2x - 4(3x-5) - 5 = 0x^2 + 9x^2 -30x +25 + 2x -12x + 20 - 5 = 010x^2 -40x + 40 = 010 (x^2 - 4x +4) = 010(x - 2)^2 = 0x=2implies one point of contact, therefore tangenty = 3x - 5y = 6 -5 = 1

RM
Answered by Robert M. Maths tutor

2410 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Find ∫((x^2−2)(x^2+2)/x^2) dx, x≠0


a) Factorise: 2x^2-72, and hence b) find the y-intercept of the line with the equation: y=(2x^2-72)/(4x-24)


If f(x) = 1/(6x^2), where x not equal to 0, find the rate of change when x=4.


Given that dy/dx = 6x*2 - 3x + 4 And y =14 when x=2. Express y in terms of x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning