PQR is a triangle with vertices P (−2, 4), Q(4, 0) and R (3, 6). Find the equation of the median through R.

(1) Find the Midpoint of PQ which is (1,2) (Halfway between the x and y coordinates)(2) dy/dx for M(1,2) -> R(3,6) = (6-2)/(3-1) = 4/2 = 2(3) y =mx + c so y = 2x + c when R(3,6) is input 6 = 2(3) + c, c = 0 so y=2x

SH
Answered by Scott H. Maths tutor

4555 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

A circle has equation x^2+y^2+6x+10y-7=0. Find the equation of the tangent line through the point on the circle (-8,-1).


Express '2x^2 + 8x + 30' in the form 'a(x+b)^2 + c'


what is 87% of 654


y=x^3-3x^2+2x+5 a)Write down the coordinates of P the point where the curve crosses the x-axis. b)Determine the equation of the tangent to the curve at P. c)Find the coordinates of Q, the point where this tangent meets the curve again.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning