equation(1) h = 3t^2 a) find h when t=5 b)find t when h=108

for part AYou would but the t2 into brackets , then substitute t=5 to get h=3(52) using BIDMAS do the 52 = 25 so that h=3(25) so you end up with h=75
for part B first you would rearrange the equation to make t the subject (t on its own on one side) h/3=t2 then square root h/3sqrt{h/3}=t Then finally you substitute In h=108 sqrt{108/3}=tsqrt(3)=t

DN
Answered by Danielle N. Maths tutor

4263 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 3x + 10 = 10(2x-5)


Find the values of x for the equation: x^2 - 8x = 105


A rectangular frame is made from 5 straight pieces of metal with height 5m and length 12m. One of the pieces of metal goes through the diagonal of the rectangle. The weight of the metal is 1.5 kg per metre. Work out the total weight of the metal


40 students were surveyed: 20 have visited France 15 have visited Spain 10 have visited both France and Spain. Use this information to complete a Venn Diagram


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences