equation(1) h = 3t^2 a) find h when t=5 b)find t when h=108

for part AYou would but the t2 into brackets , then substitute t=5 to get h=3(52) using BIDMAS do the 52 = 25 so that h=3(25) so you end up with h=75
for part B first you would rearrange the equation to make t the subject (t on its own on one side) h/3=t2 then square root h/3sqrt{h/3}=t Then finally you substitute In h=108 sqrt{108/3}=tsqrt(3)=t

DN
Answered by Danielle N. Maths tutor

4781 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A prism with a triangular cross section has volume 120cm^3. The base of the triangular face has length 6cm. The width of the prism is 10cm. The height of the triangular face is h. Find h.


Make s the subject of :v^2 = u^2 +2*a*s


The diagram shows a sector ORST of a circle with centre O. OR = OT = 10.4 cm. Angle ROT = 120°. (a) Calculate the length of the arc RST of the sector (3s.f)


what is the point of intersection between the lines 3y-4x=12 and 2x=2y+3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning