Explain how integration via substitution works.

The function in terms of x should be broken down into two easier to integrate functions, like so f(x) = g(h(x)). if we say that u=h(x) is our substitution then we can integrate in terms of u now, however the dx term must also be written in terms of u. for this, differentiate u with respect to x using the function h(x) giving du/dx. now du and dx can be split up and dx can be substituted into the integral in terms of u and du. This can also be done with boundary conditions at the top and bottom of the sigma but it is not necessary as they can be put in when u is converted back in terms of x after the integration.
now the integral with respect to u can be performed. once this is done x can be substituted back in using the relation u=h(x). (this explanation would be aided with a step by step example).

DF
Answered by Daniel F. Maths tutor

3374 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation cosec^2(x) = 1 + 2cot(x), for -180° < x ≤ 180°.


A curve has equation y = x^3 - 48x. The point A on the curve has x coordinate -4. The point B on the curve has x coordinate - 4 + h. Show that that the gradient of the line AB is h^2 - 12h.


In this question, take 'log' to mean 'log base 5'. Solve the equation log(x^2-5)-log(x) = 2*log(2)


How would I find the indefinite integral of x*cos(x) dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning