integrate (2x)/(x^2+1) dx with limits 1, 0

Firstly we notice that the numerator is the derivative of the denominator so we can use integration by subsitution method. Setting u=x^(2)+1. We can differentiate this to get du/dx=2x Subbing in dx=du/2x . This cancels out the 2x in the function we are trying to integrate. We are left with the integral of 1/u du. However we must not forget to change the limits as they as with respect to x and not u. We can sub in the limits into u=x^2+1. When x=1, u=(1)^2+1 = 2When x = 0, u=(0)^2+1 = 1Therefor our new limits are 2,1 If we integrate 1/u du with limits 2,1 we get ln(u) + c (this is a standard rule) Subbing in the limits we get: ln(2) - ln(1) = 0.693147...We have worked out the area under the curve f(x)=(2x)/(x^2+1) between x=1 and x=0

TJ
Answered by Tanya J. Maths tutor

3940 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What's the gradient of the curve y=x^3+2x^2 at the point where x=2?


Integrate the function f(x) = 1/(4x-1)


Given that 5cos^2(x) - cos(x) = sin^2(x), find the possible values of cos(x) using a suitable quadratic equation.


Three forces of magnitude 50N, PN, QN all act in a horizontal plane in equilibrium. The diagram shows the forces. DIAGRAM: QN = EAST, 50 = SOUTH, PN = 120 DEGREES ANTICLOCKWISE FROM QN a) Find P. b) Find Q.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences