Solve the simultaneous equations: x^2+y^2=36 ; x=2y+6

Substitute x in terms of y into the first equation:

(2y+6)2+y2=36

Use FOIL to expand the brackets

4y2+24y+36+y2=36  =>   5y2+24y=0

y(5y+24)=0  =>  y=0   or    y=(-24)/5

Substitute these values of y into the second equation to find x

when y=0, x=2*0+6  =>  x=6

when y=(-24)/5,  x=2*(-24)/5+6  =>  x=-3.6

DB
Answered by Daniel B. Maths tutor

32743 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: [4x-y=3] and [6x +2y=1]


Simplify the surd sqrt(48)


There are 720 boys in a school and 700 girls. The probability that a girl chosen at random studies french is 3/5 and the probability that a boy chosen at random studies french is 2/3. What is the total number of students in the school that study french?


Can you solve these simultaneous equations and find the values of x and y? Equation 1: 2x + y = 14 Equation 2: 4x - y = 10.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning