Solve the simultaneous equations: x^2+y^2=36 ; x=2y+6

Substitute x in terms of y into the first equation:

(2y+6)2+y2=36

Use FOIL to expand the brackets

4y2+24y+36+y2=36  =>   5y2+24y=0

y(5y+24)=0  =>  y=0   or    y=(-24)/5

Substitute these values of y into the second equation to find x

when y=0, x=2*0+6  =>  x=6

when y=(-24)/5,  x=2*(-24)/5+6  =>  x=-3.6

DB
Answered by Daniel B. Maths tutor

32754 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove that the lines 2y=3-x and y-2x=7 are pependicular.


Solve 3x^2 + 13x + 14 = 0


Fahima buys 2 packets of bread rolls costing £1.50 for each packet 1 bottle of ketchup costing £1.60 3 packets of sausages Fahima pays with a £10 note. She gets 30p change. Fahima works out that one packet of sausages costs £2.30 Is Fahima right?


Solve the following simulatenous equation to find the values of both x and y: 5x+2y=16 3x-y=14


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning