What is the integral of x sin(x) dx?

Find the following integral: ∫ x sin(x) dx

This question is a good candidate for the integration by parts method, as it is the product of two different 'parts'.

Step 1) Recall that if you have an integral of the form:
∫ u(dv/dx) dx

Then it can be written as:
uv – ∫ v(du/dx) dx

We need to decide which part we will differentiate (as in, which part is u), and which part we will integrate (as in, which part is dv/dx).

Step 2) We can note that continuously differentiating sin(x) results in a loop of cos(x), –sin(x), –cos(x), sin(x)..., whereas differentiating x once gives 1. From this, it seems to make sense that we would want to differentiate the x part (so u is x) and therefore integrate the sin(x) part (so dv/dx is sin(x)).

So, let:
u = x, which implies du/dx = 1

And let:
dv/dx = sin(x). Integrating this to get v gives v = –cos(x)

Step 3) So, our integral is now of the form required for integration by parts.
∫ x sin(x) dx 
= ∫ u(dv/dx) dx
= uv –  ∫ v(du/dx) dx
= –x cos(x) – ∫ –cos(x)*1 dx
= –x cos(x) – ∫ –cos(x) dx
= –x cos(x) + ∫ cos(x) dx

The integral of cos(x) is equal to sin(x). We can check this by differentiating sin(x), which does indeed give cos(x).

Step 4) Finally, as with all integration without limits, there must be a constant added, which I'll call c. So the final answer is:

∫ x sin(x) dx = –x cos(x) + sin(x) + c

SF
Answered by Shaun F. Maths tutor

339321 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the indefinite integral of xsinx


The first term of an arithmetic series is a and the common difference is d. The 12th term is 66.5 and the 19th term is 98. Write down two equations in a and d then solve these simultaneous equations to find a and d.


Find the equation of the normal to the curve y = 2x^2 -3x +7 at the point x = 1.


find the value of dy/dx at the point (1,1) of the equation e^(2x)ln(y)=x+y-2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning