The curve C has equation 2yx^2 + 2x + 4y - cos(πy) = 45. Using implicit differentiation, find dy/dx in terms of x and y

2x2y + 2x + 4y - cos(πy) = 45Applying implicit differentiation:4xy + 2x2(dy/dx) + 2 + 4(dy/dx) + πsin(πy)(dy/dx) = 0Moving all (dy/dx) terms to one side:2x2 (dy/dx) + 4(dy/dx) + πsin(πy)(dy/dx) = -4xy - 2Factorising:dy/dx [ 2x2 + 4 +πsin(πy) ] = -(4xy + 2)Making (dy/dx) the subject of the equation:dy/dx = -(4xy + 2) / 2x2 + 4 +πsin(πy)

PM
Answered by Prahlad M. Maths tutor

5464 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When integrating, why do we add a constant to the resulting equation?


Find the stationary points of the function y = (1/3)x^3 + (1/2)x^2 - 6x + 15


Find the antiderivative of the function f(x)=(6^x)+1


Find the stationary points of the function f(x) = x^3 - 27x and determine whether they are maxima or minima


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences