The curve C has equation 2yx^2 + 2x + 4y - cos(πy) = 45. Using implicit differentiation, find dy/dx in terms of x and y

2x2y + 2x + 4y - cos(πy) = 45Applying implicit differentiation:4xy + 2x2(dy/dx) + 2 + 4(dy/dx) + πsin(πy)(dy/dx) = 0Moving all (dy/dx) terms to one side:2x2 (dy/dx) + 4(dy/dx) + πsin(πy)(dy/dx) = -4xy - 2Factorising:dy/dx [ 2x2 + 4 +πsin(πy) ] = -(4xy + 2)Making (dy/dx) the subject of the equation:dy/dx = -(4xy + 2) / 2x2 + 4 +πsin(πy)

PM
Answered by Prahlad M. Maths tutor

5844 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If y=(a^(Sinx)) where a and k are given constants, find dy/dx in terms of a and x


How can I find the area under the graph of y = f(x) between x = a and x = b?


How do I differentiate a quadratic to the power n?


A curve has the equation y = x^4 - 8x^2 + 60x + 7. What is the gradient of the curve when x = 6?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning