Find the stationary points of the curve y (x)= 1/3x^3 - 5/2x^2 + 4x and classify them.

To find the stationary points of the curve y(x), you must first differentiate the equation for y(x) in terms of x. This gives d(y(x))/dx = x^2 -5x +4. Now set this differential equal to zero and solve for x (as at a stationary point the gradient of a curve is equal to zero), to find the x coordinates of the stationary points. This quadratic can be factorised to give (x-4)(x-1) = 0, so x is equal to 4 and 1 for the two stationary points respectively. To find the y coordinate of the first stationary point when x=1, simply put this value into the equation for y(x). This gives a stationary point of (1,11/6). For the stationary point when x=4, do the same to obtain the y coordinate. This gives a stationary point (4,-8/3).To classify the stationary points, the second order differential for y(x) must be found, which is d^2(y(x))/dx^2 = 2x -5. Now for the two stationary points, substitute into the second order differential the two x coordinates. For x=1, d^2(y(x))/dx^2 = -3, which is less than zero so (1,11/6) is a local maximum. When x=4, d^2(y(x))/dx^2 = 3, which is greater than zero meaning (4,-8/3) is a local minimum.

DR
Answered by Danny R. Maths tutor

6120 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By expressing cos(2x) in terms of cos(x) find the exact value of the integral of cos(2x)/cos^2(x) between the bounds pi/4 and pi/3.


A triangle has sides A, B and C. The side BC has length 20cm, the angle ABC is 50 deg and angle BAC is 68 deg. a) Show that the length of AC is 16.5cm, correct to three significant figures. b) The midpoint of BC is M, hence find the length of AM


Express x^2 - 7x + 2 in the form (x - p)^2 + q , where p and q are rational numbers.


How do you find the normal to a curve at a given co-ordinate?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning