Using the product rule, differentiate y=(2x)(e^3x)

The product rule states that if y=uv, where u and v are both functions of x, then dy/dx = u(dv/dx) + v(du/dx)Therefore, the differential of 2xe3x can be found by letting 2x=u and e3x =v.u=2x,du/dx = 2
v=e3xdv/dx = 3e3x
dy/dx = u(dv/dx) + v(du/dx)dy/dx = 2x(3e3x) + e3x(2)dy/dx = 6xe3x + 2e3xdy/dx = 2e3x(3x+1)

CO
Answered by Christy O. Maths tutor

6776 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the complex equation z^3 + 32 + 32i(sqrt(3)) = 0


Simplify the following C4 question into it's simplest form: (x^4-4x^3+9x^2-17x+12)/(x^3-4x^2+4x)


Find the values of k for which the equation (2k-3)x^2-kx+(k-1) has equal roots


i) It is given that f(x)=(-5-33x)/((1+x)(1+5x)), express f(x) in the form A/(1+x) + B/(1+5x) where A,B are integers. ii) hence express the integral of f(x) between x=3 and x=0 in the form (p/q)ln4 where p,q are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning