Using the product rule, differentiate y=(2x)(e^3x)

The product rule states that if y=uv, where u and v are both functions of x, then dy/dx = u(dv/dx) + v(du/dx)Therefore, the differential of 2xe3x can be found by letting 2x=u and e3x =v.u=2x,du/dx = 2
v=e3xdv/dx = 3e3x
dy/dx = u(dv/dx) + v(du/dx)dy/dx = 2x(3e3x) + e3x(2)dy/dx = 6xe3x + 2e3xdy/dx = 2e3x(3x+1)

CO
Answered by Christy O. Maths tutor

6183 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate the curve y = 4x^2 + 7x + 1? And how do you find the gradient of this curve?


How many solutions are there of the equation a+b+c=12, where a,b,c are non-negative integers?


Solve the following equation: 5x - 1 = 3x + 7


Find the acute angle between the two lines... l1: r = (4, 28, 4) + λ(-1, -5, 1), l2: r = (5, 3, 1) + μ(3, 0, -4)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences