Solve the equation 2y^(1/2) -7y^(1/4) +3 = 0

2y1/2 -7y1/4+ 3 = 0 We need to use a substitution to obtain a quadratic.Let y1/4 = x (use the y with the smallest fractional power as your substitution)From this, we can see that y1/2 = x2 (using the laws of indices: (ya)b = yab )We substitute this in and obtain an equation in terms of x. The right hand side will stay the same as this is just equal to 0.The equation becomes:2x2 -7x + 3 = 0 We can now solve this by factorizing, (2x - 1)(x -3) = 0 we now get our solutions:(2x - 1) = 0 rearranging for x we get: x = 1/2(x - 3) = 0 x = 3 Sub our values for x into the original substitution y1/4 = x We can rearrange this substitution for y:(y1/4)4 = (x)4y = x4 Now y = (1/2)4 = 1/16and y = (3)4 = 81 so the solutions of the equation are 1/16 and 81.

SL
Answered by Sarah L. Maths tutor

5736 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate 3x^2+1/x and find the x coordinate of the stationary point of the curve of y=3x^2+1/x


A matrix M has eigenvectors (3,1,0) (2,8,2) (1,1,6) with corresponding eigenvalues 1, 6, 2 respectively. Write an invertible matrix P and diagonal matrix D such that M=PD(P^-1), hence calculate M^5.


How do I calculate the rate of change of something for which I don't have an equation?


(19x - 2)/((5 - x)(1 + 6x)) can be expressed as A/(5-x) + B/(1+6x) where A and B are integers. Find A and B


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences