For sketching the graph of the modulus of f(x) (in graph transformations), why do we reflect in the x-axis anything that is below it?

Let's remember what applying a modulus to any number actually does. Applying the modulus to a number just gives us back the positive version of that number- if it is positive, we get back itself, and if it is negative, we get back the positive version of it. For example, the modulus of 5 is 5, and the modulus of -5 is 5 again.Let's see how this fits into our discussion of graphs. f(x) is a number after all for any specific fixed x- we plug in an x value and we get a number corresponding to that specific x value given by f(x) (i.e. its y-value). So let's say I take x=1. That will give me back f(1). If f(1) is positive, the point lies above the x-axis, since the y-value at x=1 is positive. Applying the modulus to f(1) will not change it- it will stay as it is, f(1). Hence if it is positive we leave the point as it is. So anything above the x-axis stays as it was before. Now, if f(1) happens to be negative, this means the y-value at x=1 is negative and the point lies below the x-axis. If we apply the modulus, we get the positive version of f(1), which is going to be that same y-value, but now becoming positive and so going above the x-axis. So for all points below the x-axis, we reflect them above the x-axis.Summarising, we have that points above the x-axis remain unchanged, whereas points below the x-axis get reflected in the x-axis upwards. Are we following, or do you need me to explain something again? [I would use a visual argument on the board as well, at the same time as explaining, so it can be clearer to the student.]

SR
Answered by Stefanos R. Maths tutor

5451 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative of A^4 + 2A^2 - 3A + 4


Find all the stationary points of the curve: y = (2/3)x^3 – (1/2)x^2 – 3x + 7/6 and determine their classifications.


The line AB has equation 5x+3y+3=0. The line AB is parallel to the line with equation y=mx+7 . Find the value of m.


Given that the equation of the curve y=f(x) passes through the point (-1,0), find f(x) when f'(x)= 12x^2 - 8x +1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning