Let z=x+yi such that 16=5z - 3z*, What is z?

z* is the complex conjugate of z therefore z* = x - yi. So 16 + 32i = 5(x + yi)-3(x - yi), real: 16 = 5x - 3x => 16=2x => x=8, imaginary: 32 = 5y + 3y => 32 = 8y => y=4, therefore z = 8 + 4i.

BC
Answered by Ben C. Maths tutor

3580 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I write (1+4(root)7)/(5+2(root)7) in the form m + n(root)7, where m and n are integers?


How do you find the possible values of cos(x) from 5cos^2(x) - cos(x) = sin^2(x)?


A curve has equation y=x^2 + (3k - 4)x + 13 and a line has equation y = 2x + k, where k is constant. Show that the x-coordinate of any point of intersection of the line and curve satisfies the equation: x^2 + 3(k - 2)x + 13 - k = 0


Find the inverse of f(x) = (3x - 6)/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning