Let z=x+yi such that 16=5z - 3z*, What is z?

z* is the complex conjugate of z therefore z* = x - yi. So 16 + 32i = 5(x + yi)-3(x - yi), real: 16 = 5x - 3x => 16=2x => x=8, imaginary: 32 = 5y + 3y => 32 = 8y => y=4, therefore z = 8 + 4i.

BC
Answered by Ben C. Maths tutor

3344 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative of A^4 + 2A^2 - 3A + 4


If 2 log(x + a) = log(16a^6), where a is a positive constant, find x in terms of a


find f'(x) of (x^2) + 3x + 2.


Integral of Cosec(x)/Sec(x) (i.e. Use of trignometric identities)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning